

Hurricane Ian Impacts

- Category 4 at landfall at Cayo Costa Key
- 156 fatalities
 - 41 from storm surge
 - 12 from freshwater flooding
 - 4 from wind
 - 18 indirect from lack of medical services
- \$112.9 billion total damages
 - \$109.5 billion in Florida
 - 5,369 structures destroyed in Lee County, FL

Credit: National Hurricane Center

Hurricane Ian Windfield

- Peak measured wind gust: 140 mph, Iona, FL (@ landfall).
- 111 mph @ Punta Gorda from a Florida Coastal Monitoring Program tower. (U of FL 10m AGL)
- All measured wind gusts were below design levels.

Hurricane Ian Surge

Credit: National Hurricane Center

- Widespread with two landfalls and three areas of action (SW FL, NE FL, SC and NC)
- Peak water levels in SW FL
- Largest impact on buildings and residents, similar to Ike (2008), Sandy (2012) and Katrina (2005)

Hurricane Ian Surge Water Levels

Water levels from USGS (left), NWS (right)

- Maximum surge height: 15 ft MHHW in Ft. Myers Beach
- Surge height > 7 ft
 MHHW as far south as
 Marcos Island

 6-9 ft surge inundation from lower Cape Coral and Ft. Meyers, up the Caloosahatchee River

Credit: National Hurricane Center

Surge Damage Impact: Inundation

 Related to the most measured impact forcing – buoyancy

Exceeded return intervals.

• Extensive guidance available in ASCE7.

Other Surge Impacts

Credit: Max Olson:

Waves

No measurements during or after the storm

Conservative estimates are made with wide error bars

Relatively low confidence guidance in ASCE7 evaluating damaging debris

Credit: James LaDue, NIST

Flow Velocity

No measurements during or after the storm

Conservative estimates are made with wide error bars

Relatively low confidence guidance in ASCE7 evaluating damaging debris

Credit: James LaDue, NIST

Debris

Limited data collection during or after the storm

Includes loading and impacts

Relatively low confidence guidance in ASCE7 evaluating damaging debris

Wind Impacts: newer residences

 Peak wind gusts ~125 mph, were ~25 mph below design levels.

 New housing, built to modern codes, had little visible wind damage.

Wind Impacts: Roofing

Credit: James LaDue, NIST

Aluminum roof shingle damage in western Punta Gorda.

 Some residences suffered more significant roof damage.

Possible causes:

- Built to older codes
- Poor application of modern codes
- Poor maintenance

Wind Impacts: other cladding damage

Credit: James LaDue, NIST

 Blown out window caused collateral damage to siding.

Wind Impacts: Rainwater Intrusion

 Wind-induced rainwater intrusion damaged interiors content and finishes.

 Some building systems have little guidance for mitigating rainwater intrusion.

Credit: James LaDue, NIST

Hurricane Ian NWIRP Study Goals

Storm Surge

Improve storm surge guidance for ASCE's standards and codes based on inundation, currents, waves and debris.

Wind Effects

Determine causes of wind damage and rainwater intrusion.

Document successes of improved codes in mitigating damage.

Evacuation

Determine why many residents did not evacuate leading to significant casualties.

NIST Plan for an Ian NWIRP Study

- NWIRP study with a research-tooperations (R2O) process to improving codes and standards
- Funded as part of the \$40M disaster supplemental provided to NIST by Congress in December 2022

Jim LaDue Acting Director, NWIRP james.ladue@nist.gov

Questions?